Tag Archives: NASA

EXCLUSIVE: Transcript of NASA News Conference Announcing Discovery of ‘Habitable Environment’ on Mars

We present here a transcript of the science presentations delivered  at a March 12, 2013 press conference  at which NASA Mars Science Laboratory (“Curiosity”) scientists announced that they had discovered evidence of what had been – how long ago may not yet be precisely determined –  a “habitable environment” on Mars.

The discovery – which is NOT the discovery of “life on Mars” – is another step forward towards that goal.  Having now found multiple proofs that water both flowed and pooled on Mars for long enough periods of time to have produced mineral-rich clays of a type very similar to those on Earth (in which, some scientists speculate, early multicellular life forms may have evolved on Earth), the NASA team will now search to confirm some of the most intriguing discoveries recently made, which their Principal Investigator team describes below.  These developments have come quite rapidly from this mission; we expect that there will be many more exciting discoveries made by the Curiosity team in the very near future – and as soon as they occur, we will try to bring the news to you.

As always, this transcript was produced by ourselves from the video on NASA’s USTREAM channel.  It’s still a nearly complete, uncorrected partial transcript; we were not able to complete Dr. Grotzinger’s “wrap up” of the press conference, though we do have the entirety of all the four main science presentations made, including the accompanying graphics.  We also have to go back and research the names of several scientists mentioned during the press conference, whose names we render here phonetically.  We also have not yet been able to listen to or transcribe the highlights of the “question-and-answer” session which took place at the end of these presentations, which you can see by watching the video.  We’ll try to get to that in the next couple of days.  Someday, the working class of the US will see the value in having a political party of their own and will be willing to properly fund such a party, at which time we will be able to do this work full-time for the benefit of the working class.  Until that glorious day dawns upon these United States, we have to continue to work other – far less important – jobs for a living!  All errors of transcription are our own.



[NASA Briefing on Curiosity’s Analysis of Mars Rock – 12 March, 2013.  NASA Headquarters, Washington, D.C.]

Moderator: Dwayne Brown, NASA Office of Communications

Dr. John Grunsfeld, Associate Administrator, NASA’s Science Mission Directorate

Dr. Michael Meyer: Lead Scientist, Mars Exploration Program, NASA Headquarters, Washington, DC.

Dr. John Grotzinger: Curiosity Project Scientist, California Institute of Technology (Caltech), Pasadena, California

Dr. David Blake: Principal Investigator, Curiosity’s Chemistry/Mineralogy Instrument (CheMin), NASA’s Ames Research Center, Moffett Field, California

Dr. Paul Mahaffy: Principal Investigator, Curiosity’s “Sample Analysis at Mars” (SAM) Instruments, Goddard Space Flight Center, Greenbelt, Maryland

Dr. Meyer:  “The NASA Mars Exploration Program has progressively approached the red planet from a global perspective to focus exploration of regions, past and present, that exhibit the potential for life.  Every successive mission has boosted our expectations that Mars could have been a ‘habitable planet’: a place that could have supported life.  This program of orbiters and landers have brought us to the point of seeking a habitable environment on Mars.  This is what brought the rover ‘Curiosity’ to Gale Crater.  Mineralogical, and geomorphological evidence from orbit showing that the area had significant amount of water in its’ past.

“As John mentioned, on August 6th, Curiosity landed spectacularly where we wanted in Gale Crater.  Within two months the team found an ancient riverbed: evidence of flowing water.  And we followed that downhill to ‘Yellowknife Bay’.  At the same time, we exercised the rover’s capabilities, tested the instruments for the first time, and doing science along the way.   We have now completed all the ‘first-time’ activities including the first sample drilled on another planet.

“This mission has been a fantastic team effort of engineers and scientists to deliver a highly capable exploration rover to Mars.  The rover is now fully commissioned for science; all the instruments are working; and the ‘keys to the rover’ have been turned over to the science team.  Woo hoo! [sic – lol]  [laughter]

“So, Mars has written the autobiography – its autobiography – in the rocks of Gale Crater; and we have just started deciphering that story.

“So, ‘Chapter One: Yellowknife Bay’:  This was an ancient environment with the right elements (minerals indicating a near-neutral environment) and slightly salty liquid water – all the prerequisites to support life; a habitable environment.  And so for the rest of the story, I’ll turn this over to John.”

Dr. Grotzinger: “Good.  Thanks, Michael. It’s a great science story, as Michael was saying; and I need to start first with acknowledging our colleagues that came before us, and also the entire planetary community that supported this mission.  As you know, developing MSL [Mars Science Laboratory – ed.] was a tremendous challenge and we had plenty of adventures there, but we got the support from our community and we really appreciate that.

I’d also like to thank the ‘Mars community’ and through the leadership of [Mack Donaldbeck?] and John Grant which led to the final selection of landing sites that ulimately led us to Gale, where we have had a terrific time so far – that’s been great.  And also, in particular, the MER mission; ‘Spirit’ and ‘Opportunity’; ‘Mars Express’ and also ‘Mars Reconnaissance Orbiter’.  ‘If we have looked farther it’s because we have stood on the shoulders of giants.’  And those missions allowed us to fine-tune our exploration campaign that led us to this place.

Finally, those of us that get to sit up here today are joined by our colleagues back at JPL [Jet Propulsion Laboratory – ed.] and elsewhere – the other P.I.’s [Principal Investigators – ed.] of the mission, including Ken [Edgett?], Ralph [Gellaert?], Don [Hassler?], Mike Malin, Igor [Mitrofanoff?] and Roger [Wiens?] and Javier [Gomelsavira?].  Every one of the instruments has led into the discovery that we have made here.  Some of those instruments presented back in January when we first talked about the geology and that ChemCam discovered the first evidence for sulfates in this area here.  You’ll hear more results coming out next week at LPSC [?] and then at EGU [European Geophysical Union?] over in Europe, in April, you’ll get to hear more still.

So this has been a very comprehensive exercise and we didn’t just stumble into this area; this is something that took a lot of planning.

O.K.  So let me go to the first display item and bring you back to where we were the night of landing, when we as a community first looked at this slide.

Image Credit: NASA/JPL-Caltech/ASU
Location of John Klein Drill Site

“We had selected as landing site; and the landing ellipse in particular was close to Mt. Sharp, which was considered to be our primary objective.  And so you can think about drilling an oil well here: you don’t just go in with one objective; you need primary objectives and you want secondary objectives.  And we had a secondary objective which was a distal part of this alluvial fan that you see here in the landing ellipse.  And we needed this in the back pocket in order to have the landing site confirmed by the review board, and then eventually accepted by headquarters.  And in case something happened to the rover we needed to make sure we had science to do in that landing ellipse.

“But that was sort of a… you can think of it as a back-up or a secondary objective and it turns out now, in fact, that it had become our primary objective at this point.

“We landed at the… there where it says ‘Curiosity Landing Site’ and we drove just a few hundred meters in the opposite direction.  We did this deliberately.  And this was based on the mapping that the science team did in advance of landing, and based on the previous mapping that came from ‘Odyssey’ and ‘MRO’ and all those great missions before us.  And in this particular case it led to the deliberate discovery.  So it wasn’t ‘serendipity’ or ‘luck’ that got us here; it was the result of planning.

“Now, what Paul and Dave will tell you about is the part that we do consider serendipitous: we had no idea that we were gonna go into the aqueous environment that we were predicting to exist here and also find sulfates and also find clays – and those guys will tell you about it.

“So that’s one of the reasons that we’re gonna be spending some time here.  So let me turn it over to Dave and he can tell you about ChemMin.”

Dr. Blake:  “Well thanks, John.  And, uh, you know, we got really excited when we first saw these uh… bedrock at ‘John Klein’ and saw these concretions and the reason is concretions are evidence of a water-soaked sediment – a soft sediment.  But what kind of an environment was it?  Was it ever habitable for life and if it was, would it preserve the organics for literally billions of years until we came here to take a look, to see if we could see what was there?

If you turn to the first graphic, you can see what made us think we really found something special.

Image Credit: NASA/JPL-Caltech/MSSS
First Curiosity Drilling Sample in the Scoop

“O.K.: well, this is what we call ‘paydirt’.  This powder in the scoop here is from ‘John Klein’ – the drill powder – and it’s gray-green, meaning that it wasn’t highly oxidized.  And you can see in the back of the scoop there, there’s a little bit of reddish material – this is from the ‘Rocknest’ – and this is highly oxidized.  So anyway what it shows you is that this material was never highly oxidized and therefore if there was organic material present there, it could have been preserved.

The second graphic shows a comparison of the two x-ray diffraction patterns that ChemMin has collected so far.

Image Credit: NASA/JPL-Caltech/Ames
Minerals at ‘Rocknest’ and ‘John Klein’

“On the left is ‘Rocknest’ soil; and on the right is the pattern we got recently from ‘John Klein’.  You can see they look very similar; and from our analyses we can tell you they both have igneous minerals – feldspar, pyroxine, olivine and magnetite.  What’s different: if you look at the ‘John Klein’ diffraction pattern – down close to the central point there – the intensity is due to clay minerals.  And you see they are labeled ‘Phyllosilicates’.  And we can tell you from our analysis there’s between twenty and thirty percent of a phyllosilicate called ‘smectite’; and that smectite forms in the presence of water – we know that.

In addition, we have evidence of salts like halite and calcium sulfates rather than iron or magnesium sulfates that were found at Meridiani [Crater – ed.].  And this suggests that the water was a relatively neutral pH and, in other words, it was a potential habitable environment.

So all of this is what mineralogy can tell you from an ancient surface that’s billions of years old.

So the next graphic shows you what we think a good terrestrial analogue is for this material we found in ‘Yellowknife Bay’:

Image Credit: NASA/JPL-Caltech/Ames
An Earth Analog to Mars’ Yellowknife Bay

The left image shows a clay-bearing sediment deposited in a lake bed in southern Australia; and on the right you see a core of this sediment.  And the different layers in the core represent different changes in mineral composition as the lake sediment was deposited.  And with that, I’ll let Paul talk about what the SAM instrument found.”

Dr. Mahaffy: “Thanks, Dave.  Just delighted to show you some results from SAM.  And I’m gonna explain a little bit about how we did this fairly complex experiment; but I thought it would be fun to bring along what’s a full-sized scale model of SAM – the ‘Sample Analysis at Mars’ experiment.

SAM and ChemMin are both very deep inside of Curiosity, so in these kind of beautiful ‘self-portraits’ that Ken [Enge’s?] camera takes of Curiosity, you don’t see much of SAM and ChemMin.  We have a test bed up at Goddard; you don’t see much of it either because it’s in an environmental chamber – it’s buried deep inside an environment that represents Mars.  So here [gestures towards model of SAM sitting to his left on conference table – ed.] we’ve kind of taken away the aluminum paneling and put on plexiglass and made a model.  And where the experiment starts that I’m gonna describe, we have just a little bit of sample located inside a SAM cup.  And I went last night into Amy [McAdams’?] lab up at Goddard and dug around and found some nontronite, which is a clay mineral of the type that we’re gonna be talking about today.  And I – there was a scale in there and I weighed out forty-five thousandths of a gram of that stuff because that’s about the amount that was in our SAM cup when we analyzed it.

So that’s where the story of this analysis that I’m gonna tell you starts; [begins demonstration, approximately 14:28 in the video – ed.] we have the sample in the cup in SAM – we have loaded it the previous ‘Sol’ (the previous day) – and we’re ready to do our analysis.

So, it’s night on Mars – the rover’s ‘gone to sleep’.  SAM’s kind of a night owl – we like to operate at night and – nobody else there to bother us – but’s it’s also a good thermal environment for some of the intstruments to operate.

And so, we had put the sample in the cup, through this little inlet tube – this vibrates as the sample’s going into the cup.  And then the sample manipulation system developed by our collaborators at Honeybee Robotics is, uh… can be seen down here.  And it turns out that the way the sample gets to the oven is: this little carousel rotates; the sample is dropped into the cup; the oven… the [corret?] cup moves over; and then it raises into
the oven – a very small oven where we take the sample up to the maximum temperature that I’ll show you.

And what we do then is that we start heating up the oven; we get a flow of helium going over the sample; we heat up the oven and then with the mass spectrometer (which is right in this area) we sniff a little bit of that gas and we measure the chemical constituents that come off.  And as we do that we  capture a little bit of gas in our tuneable laser spectrometer that was developed by Chris Webster’s team out at JPL; and we capture a little bit more of the gas in a ‘hydrocarbon trap’ because one of our objectives of this experiment really is to search for organic compounds on Mars.  And we, later, will send this gas to the gas chromatograph… I think I have a button here that will make one of the columns light up… and then the gas goes through those columns and the individual constituents come out one-by-one and then back into the mass spectrometer through a back door, and again we analyze what Mars is made of.

And so, if you go to the first graphic, we’ll show you some of the data.

Image Credit: NASA/JPL-Caltech/GSFC
Major Gases Released from Drilled Samples of the “John Klein” Rock

“And this really is just picking out the five major gases that were evolved from the sample.  And let’s start with what’s labeled ‘Water’ on top… but the mass that we’re monitoring – that is ‘mass 18’ (that’s the signature of water).  And you see the temperature scale on the bottom (going all the way up to fifteen hundred degrees Fahrenheit in this case).  And that water is coming off at really high temperature.  And that’s exactly characteristic of the smectite clays and it’s very good confirmation of what the ChemMin saw – we really do have clays here; and about thirty percent of the water that’s coming off is that… is that high-temperature water.

Go down to the lower left: you’ll see a blue trace; that’s oxygen.  We’ve blown it up by about a factor of ten in this case for illustration.  And we did see some oxygen at our ‘Rocknest’ dust pile; and we attribute that to the decomposition of a perchlorate, which is pretty interesting.  It looks like there’s very likely some perchlorate here as well.

The red peak is, likewise, carbon dioxide.  The carbon dioxide is produced either from oxygen reacting with carbon in the sample and making this carbon dioxide, or really the other alternative is the decomposition of carbonate.  And both of those possibilities are just fascinating, so that’s what  we’ll be pursuing as we progress with new samples and so on.

And then, finally, in the bottom right, at higher temperatures, you see masses labeled ’64’ and ’34’.  And those represent an oxidized and a reduced form of sulphur; they represent, respectively, sulphur dioxide and hydrogen sulphide.  And so, that’s just fascinating: we have both oxidized and – much more than in this atmospheric dust – much more reduced sulphur there as well.

What the tuneable laser spectrometer was doing in the meantime in this experiment was measuring the deuterium-to-hydrogen ratio in water.  And it… very interesting observation.  We had measured very high deuterium-to-hydrogen ratio in water evolved from the dust; and we understand that as being a signature of a good fraction of water having been lost from the Mars atmosphere over geological time.  And in this sample we see just the lowest deuterium-to-hydrogen ratio that we’ve seen in evolved gas so far; and  so that’s something that we’re gonna definitely be pursuing as we go forward with other samples.

So go to the next slide.  And here’s what the search for organics is looking like.

Image Credit: NASA/JPL-Caltech
Chlorinated Forms of Methane at “John Klein” Site

The data looks like… uh… signatures of mass-to-charge, just as I showed in the previous time; but here these compounds are coming out of the end of the gas chromatograph column.  And here we see two compounds that we actually had also detected at ‘Rocknest’: very simple chloromethane and dichloromethane compounds.  And it looks like they’re above the background level; it looks like they’re there.

Uh, we have to be very careful at this point in interpretation.  This was the very first sample that had gone through the Curiosity drill; and so there’s always the possibility that some residual carbon that was on the drill bit made its way into this sample.  So we’re really looking forward to repeating this experiment and seeing if these signatures of simple chloromethane compounds persist.

So, the really good news is the instrument is just working beautifully; it’s a credit to the very talented team that worked hard on not only making this stuff but making it robust and making it work in this very difficult environment on Mars.

So, with that I’ll turn it back to John for some additional comments.”

Dr. Grotzinger:  “Great. Thanks, Paul.  So, what I’d like to do now is sort of set the stage a little bit for what we view in this mission as the transition from the original goal, a decade ago, from the search for water on Mars to, now, the search for habitable environments on Mars.  And if we go to the first display item there…

Image Credit: NASA/JPL-Caltech/Cornell/MSSS
Two Different Aqueous Environments

“…what we can see are two rocks separated by a decade of research: the one on the left is from the ‘Opportunity’ rover back in 2004 (a rock called “Wotney”).  And what you see here is a rock – these images have been processed by Mike Malin and Jim Bell with what’s called ‘white balance’ – and it helps bring out our terrestrial intuition to sort of get a sense of what these rocks would look like if they were on Earth.  The one on the left is basically from the sequence of rocks at Meridiani Planum: a rock that is reasonably fine-grained; the particles were either formed in water or transported in water; it was then cemented in water (converted from sediment into rock); and then after that it was fractured and then some of the fractures were filled in with what looks like a relatively thin material (in this particular rock) but then you see all the bumps sticking out.  Those are the famous ‘blueberries’; these things we know are concretions.

“Well it turns out these things are turning up on Mars; and here on the right is our rock in the ‘Yellowknife Bay’ area called ‘Sheepbed’… uh, unit, we’ve named it.  And again you can see it approximately has the same color on the surface; it’s laced with these features that look like concretions to us; and the big difference is, is that you can see in that rock that it has a white veinfill running through it.  That’s the thing that ChemCam first hit; and told us that there were probably sulfates here.  So texturally, you see rocks that were transported in water, formed in water, cemented in water, altered in water and, uh… but that’s what you get on the surface.  And so what we need to do is scratch below the surface and if you go to the next one…

Image Credit: NASA/JPL-Caltech/Cornell/MSSS
Studying Habitability in Ancient Martian Environments

“…uh… this is what a decade of engineering gives you.  On the left, there’s a rock that was one of the first rocks that we ever interacted with at Meridiani with the RAT (Rock Abrasion Tool); and on the right we have the drill hole from Curiosity.  And the drill hole’s about one third of the size of  the RAT hole there on the left.

“But the big story is in the powder that’s generated.  And so, as we learned at Meridiani, we have a rock that is composed significantly of hematite in addition to the sulfates – iron-bearing sulfates – that indicate very acidic waters.   On the right, we get to see the ‘new Mars’: the gray Mars, that one that suggests habitability, that has these clays and other minerals present.

“So what, then, do we mean by habitability?  The key thing here is an environment that a microbe could have lived in – and maybe even prospered in.  So there’s three things that we want to point out today that Dave and Paul have shown you. And the first issue comes down to acidity. We don’t see any of the evidence that we have here – the rock on the left; the one from Meridiani?  It’s totally different in the subsurface in this rock on the right: we have the clay minerals (which form in neutral pH); we don’t see the iron sulfates (which indicate acid pH); instead we see calcium sulfate.  This rock, quite frankly, looks like a typical thing that we would get on Earth.  And it’s a neutral pH environment; and I think everybody has a sense of what ‘acidity’ means, but… there are some microbes that exist at very, very low pH’s… ‘but wait, there’s more!’

“And the second point is water activity: this is ‘how much available water there was for a microorganism to live in its environment?’  So with that, I’m gonna pull out a prop here [produces familiar plastic ‘Teddy Bear” container of honey – ed.]: it’s a jar of honey.  Everybody always wonders why it is that a solution of water and sugar can last on the shelf for ever and ever without spoiling.  And the reason why is that even though there’s a lot of water in this honey, there’s not enough that’s available for a microorganism.  And if a microorganism ends up in here, all the water will be sucked out of the cell – it’s this thing called ‘osmosis’ – and the organism won’t be able to live.

Turns out, the rock on the left there?  That’s what we think happened at Meridiani, but instead of sugar we had a salt called ‘magnesium sulfate’.  And there was so much of it that it would have inhibited microorganism[s] that lived there.  That was not a habitable environment.

And then there’s one more thing that we’re really excited about that we found at Meridiani – sorry; at Gale: and, uh… it’s a battery [holds up a typical dry cell battery – ed.].  And basically these minerals that Dave and Paul were telling you about – they’re effectively like batteries.  Some of them are negatively charged and they have various oxidation states; and what we have learned in the last twenty years of modern microbiology is that, very primitive organisms, they can derive energy just by feeding on rocks.  So when Paul talks about ‘sulfate versus sulfide’ and Dave talks about clays and magnetite, these are the kind of things that tell you that there could have been a flow of electrons in the environment, just like on this battery: you hook up the wires and it goes to the light bulb and the light bulb turns on… that’s kinda what a microorganism wouldv’e done in this environment if life had ever evolved on Mars and if it was present here.

So that’s what we mean by ‘habitability’: you take all three of those factors… and to really understand that, that’s what we built this payload for, and that’s what we feel that we have succeeded at.

[Question and answer session]

Q: “NBC in Los Angeles. Can you talk to me a little bit about the area where the rock was found? What would it have been like in ancient times? What would we have seen there?

A: [Dr. Grotzinger]:  OK… so, what we imagined it would have looked like was the picture that Dave showed [“An Earth Analog to Mars’ Yellowknife Bay”, above] we feel is a pretty good representation.  It’s conservative in the sense that it shows a lakebed that’s dry; the lakebed was filled by sediment that’s derived from streams… but we don’t know how long-lived it was; and so that’s always a challenge we’ve got on Mars.  It’s not like the rocks come with numbers on them that tell you how long the water was there, or how much there was there, ultimately.  But we believe that we wound up in this ‘Sheepbed’ unit at a place that was wet for a relatively long period of time – enough for all these chemical reactions to occur.


Q:  “Irene” from Reuters:  “Congratulations! This is pretty exciting stuff you guys are reporting today.  I have two questions: first is ‘What else needs to be done for analysis of the organics to… you mentioned a little bit about “the assessments were preliminary”; and the second question probably is for John: I know this is not a ‘life detection’ mission but given that you’ve scored a ‘hole-in-one’ so early, how much farther can you push this through the remaining eighteen months of the primary mission?”


A: [Dr. Grotzinger]:  I guess, Irene, the answer to the second half of the question is to underscore what you said, which is that we’re not a ‘life detection’ mission; if there was microbial metabolism going on, we really wouldn’t have the ability to measure that.  And if there were ancient microfossils in the rock, as good as MAHLI [Mars Hand Lens Imager – ed.] is… I mean it can tell us definitively that ‘we have a mudstone here’ but it would not be able to resolve individual fossil microbes.

What we can do is to survey additional targets that we have picked out; and we still want to go to Mt. Sharp and we hope to get there.  And there are different combinations of minerals that we see fron orbit that give us different prospects, and what I hope will become a burgeoning new field of ‘comparative planetary habitability’.  And what that means is that if you look at how we’ve studied the ancient Earth, and you look at the minerals and compounds and substances that are available, and you look at the ways that different prokaryotic microorganisms can do their metabolism… they use different materials; it’s almost like an organism has evolved to exploit every one of these little ‘rock batteries’ that exist in the record.  And so the question is: how many of these different kinds of ‘batteries’ can we find at Gale Crater?  And I think that really becomes our mission, along with the search for organic compounds.”


A: [Dr. Meyer (in response to follow-up question)]:  “[…] And as you mentioned, solar conjunction…we’re headed toward that.  Basically, we can’t talk to the rover and the rover talk to us for most of the month of April.  And so, what’s gonna happen is we’ll do some more science activities now – through the end of this month – permitting, with the engineers, confirming that things are safe for us to do those operations, but we will not do another drilling – the second drill hole – until after solar conjunction.  So that… we’re not gonna start that activity until May.”

Moderator: “Our next caller, from the Wall St. Journal, Robert Lee [Huntz?].

Q: ” […] So, gentlemen: in a simple, straightforward declarative sentence… or two, please tell my readers what you have found here and why it is significant.”

A: [general laughter] Dr. Grotzinger: “I can take a… I’ll take a swipe at that. I think we had a … we have found a habitable environment that is so benign and supportive of life that, probably, if this water was around and you had been on the planet, you would have been able to drink it.”

[Long pause – ed.]

Moderator: “I think that did it for him.”


Moderator: “[…] let me take another question from Twitter: ‘The Opportunity rover: ‘three months’ and it’s going on for many, many years.  How long do you think Curiosity could last?’ ”

A: Dr. Meyer: “The half-life of its power is on the order of 84 years.  So I expect the rover to be there to shake the first astronaut’s hand… if the astronaut goes to Gale Crater.”  [laughter]

Moderator: “Next up: New York Times… Kenneth Chang. Ken?”

Q: “[…] I was wondering… given that [these rocks?] had good preservation, was there hope or expectation that they actually would have a stronger organic signal? And what does it mean that you don’t have a stronger signal?”

A: Dr. Mahaffy: […]

A: Dr. Grotzinger: “Kenneth, if I can I’ll just add a little bit to that. Paul’s reference to the early Earth is… you know in our history of exploration there… you have to have a search paradigm.  And that paradigm gets built on your understanding of the processes that result in the preservation of organics in the rock record.  And one of the big things on Earth is that because of plate techtonics we have a lot of heat that exists… that, of course, exists today.  So, a lot of organic compounds are degraded in the presence of that heat.

“On Mars, we actually think the planet cools with time, and so it may not be that heat’s the problem, it may be that radiation is the problem – something that we’re not so affected by on Earth.  So we have these three factors, as I said before.  To reiterate them (I think we’re all gonna have to learn these): the first is the primary concentration mechanism; the second is that all that ‘cool chemistry’ that creates the habitable environment – including the presence of water itself – is not necessarily a good thing for the preservation of organics.  And then the third thing is the radiation environment.  And so our ‘trick’ is to find a place where all three of those things ‘went right’ – and that could take the entire length of this mission… but we’re gonna give it our best.”


Q: Dr. Jim Green, Director, Planetary Systems Division SMD: “The one question I have, then: based on the observations, uh… what you’ve found out today is, would you say that Mars was habitable before or about the same time as Earth was in the history of the Solar System?”

A: [general chuckling on the panel] Dr. Grotzinger: “That’s a good question, Jim.” [laughter] “I’m not sure we’ll ever really be able to address that with our payload but, uh… you know, we’ve got a couple of different options here for the age of… of… just relative to Mars, how old these things are.  And right now, quite frankly, they go between being as ‘young’ as that alluvial fan lobe that comes down – which I think would be relatively young in the history of Mars – and it could be quite old.  Maybe these rocks are somehow related to the base of Mt. Sharp.  We can’t rule out that we’re looking at the base of Mt. Sharp right now – in a way?  So we’ve got a lot of options open before us… but I think, in any one of those versions, we’re talking about older than three billion years ago; and we’re probably looking at a situation where – plus or minus a couple hundred million years – it’s about the time that we start seeing the first record of life preserved on Earth.  It’s a great comparative planetary question.”


Q: Craig [Kovalt?] [Space Rep/ Curious Mars?]:  “The question on the clays: it’s one of the more significant findings is that you [had?] abundant water flow through the clay.  Uh… how does that relate to meteorite findings where they had also identified significant water [unintelligible] clays found in Martian meteorites? […]”

A: Dr. Blake: “Well, I think… you know, the clays in Martian meteorites were just… almost trace quantities and… probably… and the Martian meteorites that we’ve seen are mostly purely igneous rocks.  The clays in this rock – which is a mudstone (which was something deposited in a shallow aqueous environment) – are really a major percentage of the rock; and so they really represent a significant process.  Plus… I guess you could call meteorites the ultimate – what we call ‘float rock’: it came from someplace else and we don’t know where it came from.  We know where theis stuff came from: it came from this bedrock in Yellowknife Bay, and so we know that this environment existed in Yellowknife Bay with plenty of water.”

[To be Continued – IWPCHI]

NASA: Analysis of Mars Rock in Gale Crater Shows Life Could Have Existed on Mars

Yesterday,  in a news conference of scientists working on NASA’s Mars Science Laboratory (MSL) project, the announcement was made that the results of recent rock drilling operations on Mars have revealed that “ancient Mars could have supported living microbes.”

The results were reported by a team of scientists working with the MSL “Curiosity” rover, which has been exploring a region around Gale Crater on Mars where conclusive proof that flowing water was abundant in this location on the red planet was confirmed.   The scientists DID NOT state that they have discovered proof that life once existed on Mars, but that they have found proof that a water-rich environment in which pH levels that were consistent with what Earth-based life forms require in order to live were, indeed discovered.  ” ‘We have characterized a very ancient, but strangely new ‘gray Mars’ where conditions once were favorable for life,’ said John Grotzinger, Mars Science Laboratory project scientist at the California Institute of Technology in Pasadena, Calif.”

Scientists showed slides and photographs comparing two distinct water-rich environments discovered by NASA’s rovers in widely-separated locations on Mars: the location in Gale Crater where “Curiosity” is currently exploring, and the area where the earlier expeditions of the “Opportunity” and “Spirit” rovers discovered water-rich environments.

Although rock formations in both locations showed visually similar sedimentary rocks, the watery environment where “Opportunity” explored at Meridiani Planum in Endurance Crater was found to have contained water of a pH level too high to sustain life forms of an Earth-like nature.  “The Meridiani rocks record an ancient aqueous environment that likely was not habitable due the extremely high acidity of the water, the very limited chemical gradients that would have restricted energy available, and the extreme salinity that would have impeded microbial metabolism — if microrganisms had ever been present”.

Image Credit: NASA/JPL-Caltech/Cornell/MSSS 03.12.2013 Two Different Aqueous Environments This set of images compares rocks seen by NASA’s Opportunity rover and Curiosity rover at two different parts of Mars. On the left is ” Wopmay” rock, in Endurance Crater, Meridiani Planum, as studied by the Opportunity rover. On the right are the rocks of the “Sheepbed” unit in Yellowknife Bay, in Gale Crater, as seen by Curiosity. The rock on the left is formed from sulfate-rich sandstone. Scientists think the particles were in part formed and cemented in the presence of water. They also think the concretions (spherical bumps distributed across rock face) were formed in the presence of water. The Meridiani rocks record an ancient aqueous environment that likely was not habitable due the extremely high acidity of the water, the very limited chemical gradients that would have restricted energy available, and the extreme salinity that would have impeded microbial metabolism — if microrganisms had ever been present. In the Sheepbed image on the right, these very fine-grained sediments represent the record of an ancient habitable environment. The Sheepbed sediments were likely deposited under water. Scientists think the water cemented the sediments, and also formed the concretions. The rock was then fractured and filled with sulfate minerals when water flowed through subsurface fracture networks (white lines running through rock). Data from several instruments on Curiosity — the Alpha Particle X-ray Spectrometer, the Chemistry and Camera instrument, the Chemistry and Mineralogy instrument, the Mars Hand Lens Imager, the Mast Camera, and the Sample Analysis at Mars instrument — all support these interpretations. They indicate a habitable environment characterized by neutral pH, chemical gradients that would have created energy for microbes, and a distinctly low salinity, which would have helped metabolism if microorganisms had ever been present.

This is obviously very exciting news and brings us one step closer to the discovery of actual evidence of life on Mars.

Whether or not life ever existed on Mars is really not that important.  The fact is that it’s obvious that Mars, for whatever reason, could not support Earth-like life forms under the conditions which exist there today.  The environmental conditions we have discovered already on Mars, as well as on Earth’s other, uninhabitable planetary neighbor, Venus, prove just how fortunate we are to have the amazing planet Earth to live on, and how delicate is the balance between all the elements necessary for advanced life forms to exist on any planet “lucky” enough to orbit within a star’s “habitable zone”.

This is why we support the idea of abolishing the capitalist economic system and replacing it with an egalitarian socialist planned economic system.  The development of capitalism long ago reached the limits of its progressive character.  Placing the interests of a handful of competing entreprenurial billionaires above the interests of the billions of people living on this planet simply makes no sense at all.  These billionaires, organized as they are in competing nation-states, armed to the hilt with weapons of mass destruction endlessly fight over the limited natural resources available to us all.  Their struggles to pursue selfish ends have already produced two savage World Wars, and today threaten to plunge the world into a nuclear holocaust that could send human civilization, in the short term, back to pre-industrial levels of development – and destroy the delicate balance of Earth’s environment upon which all life forms on this planet depend.  For our civilization to allow a handful of greedheads to plunge this world into a death-spiral would be the greatest tragedy possible to imagine – and we have the power to prevent this from happening – but not if we allow human society to remain organized into competing capitalist nation-states.  That way lies World War Three.  As socialists we must warn our fellow human beings: you have a choice between socialism or barbarism.  Which will you choose?

If we as a civilization “decide” to stick with the greed system, we believe we will be “deciding” to wipe out life – or at least human life – on this planet.  That is unacceptable to us, and it should be unacceptable to you as well.

Workers of the World, Unite!


[Sources:  NASA’s Mars Science Laboratory website“NASA Mars Rover News” on USTREAM TV]

UPDATED: Transcript of NASA 15 February Teleconference on Russian “tiny asteroid” Explosion

[This article is under construction.  We’ll complete it later today eventually; it will hopefully, even in this partially completed form,  answer some questions our readers might have regarding the spectacular explosion of a “tiny asteroid” over Chelyabinsk, Russia yesterday.   The transcript was produced by us from the audio recording; all errors are ours.  UPDATE:  For more information:

This website is the online repository for the conference taking place in Vienna, Austria this week that is discussing future plans to discover, track and possibly intercept Near-Earth Objects, which is mentioned in the teleconference transcript below.  Love the name of this UN program…  the tinfoil-hat crowd will go crazy over this!  And it sounds like a double- or triple- entendre from a James Bond movie; you should always wink and wiggle your eyebrows when you say the name of this UN agency:

UN Office for Outer Space Affairs – Scientific and Technical Subcommittee: 2013 – Fiftieth Session – 11-22 February 2013


[Later on the 15th, NASA’s Jet Propulsion Laboratory issued the following update on the Russian meteorite explosion:

Update: February 15, 2013 7pm PST

New information provided by a worldwide network of sensors has allowed scientists to refine their estimates for the size of the object that entered that atmosphere and disintegrated in the skies over Chelyabinsk, Russia, at 7:20:26 p.m. PST, or 10:20:26 p.m. EST on Feb. 14 (3:20:26 UTC on Feb. 15).

The estimated size of the object, prior to entering Earth’s atmosphere, has been revised upward from 49 feet (15 meters) to 55 feet (17 meters), and its estimated mass has increased from 7,000 to 10,000 tons. Also, the estimate for energy released during the event has increased by 30 kilotons to nearly 500 kilotons of energy released. These new estimates were generated using new data that had been collected by five additional infrasound stations located around the world – the first recording of the event being in Alaska, over 6,500 kilometers away from Chelyabinsk. The infrasound data indicates that the event, from atmospheric entry to the meteor’s airborne disintegration took 32.5 seconds. The calculations using the infrasound data were performed by Peter Brown at the University of Western Ontario, Canada.

“We would expect an event of this magnitude to occur once every 100 years on average,” said Paul Chodas of NASA’s Near-Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, Calif. “When you have a fireball of this size we would expect a large number of meteorites to reach the surface and in this case there were probably some large ones.”

The trajectory of the Russia meteor was significantly different than the trajectory of the asteroid 2012 DA14, which hours later made its flyby of Earth, making it a completely unrelated object. The Russia meteor is the largest reported since 1908, when a meteor hit Tunguska, Siberia.

[Source: JPL/NASA, http://www.jpl.nasa.gov/news/news.php?release=2013-061%5D

We have also come across a white paper published in August of 2012 [actually, it was published in 2009; we were misled by the name of the .pdf file – IWPCHI] by the “Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies, National Research Council”, entitled:  “Near-Earth Object Surveys and Hazard Mitigation Strategies: Interim Report”.  In it . you can immediately see that the US effort is being wrong-headedly directed by the US capitalist class’ bought-and-paid-for ignoramuses in the US Congress at only larger asteroids.  They plan to “phase in” technology in future decades that could detect smaller asteroids, but so far their plans would not include any attempts to detect objects of the size of the one that exploded over Chelyabinsk on 15 February 2013.  Unless something is “profitable” in the eyes of the greedy capitalist class, it will not receive funding, or will receive the bare minimum necessary to cover the politicians’ butts.  Our assertion is that the defense of the planet from NEOs is far too important to be left up to the capitalist class and their penny-pinching “bottom-line” “what’s in it for us?” stupidity.  Unless we abolish the capitalist system, we will almost assuredly have to suffer a major calamity many times worse than the Chelyabinsk explosion before the greeedhead capitalists find the defense of Earth from NEOs to be within the range of affordability”.   Sticking with the capitalist system basically condemns the inhabitants of the planet to inevitable multiple natural disasters due to the inherent inability of a greed-based economic system to properly place global needs over those of the competing nation-states and their eternally warring capitalist castes seeking to increase their personal wealth at the expense of billions of their fellow men – and even their own children and grand-children.  The sad fact is: they just don’t care about anything except filling their own personal bank accounts with as much money as they can, for as long as they can.  The longer we allow them to continue to run the world as if it was their own personal piggy bank, the greater the calamity that mankind will have to face as a result.   The overthrow of the capitalist system and its replacement with an egalitarian, global, socialist economic model, we believe, is a prerequisite to the continued existence of the human race here on planet Earth, which is continually imperiled by the never-ending competition between capitalist nation-states, leading to low-level conflicts that grow into global ones, threatening the man-made disaster of worldwide nuclear war.  The future can move in two basic directions: toward international cooperation of egalitarian socialist workers republics or towards world war III.  We know which outcome we would prefer; “all we have to do” is give up our allegiance to the personal greed-based system of capitalism.  It’s a small price to pay in order to ensure the continued existence of the human race.  Workers of the World, Unite!



“What a day for near-Earth objects!”

That comment, made during a teleconference held on the afternoon of 15 February, 2013 by NASA scientists  – who had intended to be discussing a close fly-by of asteroid 2012 DA14, but who ended up talking about an actual impact on Earth of a previously unobserved mini-asteroid coming from the other direction – perfectly summed up the feelings of everyone in the audience.

These are our notes and a partial transcript of the news conference held yesterday afternoon, US Central Time, by NASA.  Thanks to NASA and its scientists for this timely clarification as to the nature of the amazing event in Chelyabinsk yesterday.  The names of the participants in the press conference are spelled phonetically and are undoubtedly WRONG in many cases; we haven’t had time to go look up everyone’s names yet. – IWPCHI



NASA News Audio Live Streaming

LIVE NOW: NASA Experts Discuss Russia Meteor in Media Teleconference

Scientists have determined the Russia meteor is not related to asteroid 2012 DA14 that will pass safely pass Earth today at a distance of more than 17,000 miles. Early assessments of the Russia meteor indicate it was about one-third the size of 2012 DA14 and traveling in a different direction.

Panelists for the teleconference are:
— [Dr.]Bill Cooke, lead for the Meteoroid Environments Office at NASA’s Marshall Space Flight Center in Huntsville, Ala.
— [Dr.]Paul Chodas, research scientist in the Near Earth Object Program Office at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.


Bill Cooke:  Okay; my comments are gonna be with regard to the Russian meteor over, uh, Chelyabinsk – I’ll get it right in a minute – Russia that occurred approximately
9:20AM Russian time this morning.  What we know is at this time is as follows: a rock – a small asteroid or large meteoroid, depending on how you want to define it – entered the atmosphere.  This rock was about 15 meters in diameter, and was a weight of about 7000 metric tons;  It was moving at 18km per second.  And for those of you who deal with normal units that’s about 40,000 miles per hour. So it hit the atmosphere above Russia moving at that speed; it penetrated at a shallow angle less than 20 degrees; it lasted over 30 seconds in our atmosphere before breaking apart about 20-25 kilometers – which is 12-15 miles – above Earth’s surface.  When it broke apart, this produced a violent explosion, and there may have been several smaller events as well.  In the vicinity of 300 kilotons of energy, which produced a shock wave which propagated down as well as through the atmosphere; and when it propagated down this shock wave struck the city below, causing large numbers of windows to be broken, some walls to collapse and  minor damage throughout the city.  So, when you hear about injuries, those are undoubtedly due to the effects of the shock wave striking the city and causing walls to collapse and glass to fly, not due to fragments striking the ground.  There are undoubtedly fragments on the ground but as of this time I know of no fragments that have been recovered that we can verify with certainty.

A preliminary orbit for this object indicates it originated in the asteroid belt with a farthest distance from the Sun about two and a half times Earth’s distance and it does appear to be an asteroid in nature.

We are asked the question: “Well, why wasn’t it detected before?” And, based on this preliminary orbit,  the reason it wasn’t detected by telescopes on Earth was because it literally came out of the “day side” of our planet.  It was in the daylight sky; and as you know telescopes can’t see things in the day time.  So this object came out of the daylight sky, and as a result was not detected by any Earth-based telescopes.  So, that’s what we know at this time, and I’m gonna pass it over to Paul Chodas and let him talk about the asteroid 2012 DA-14 plus anything he might care to add about this event over Russia this morning.

Chodas:  Well, good afternoon. What an amazing day for near-Earth objects!  By an incredible coincidence we have two rare events happening on this very same day, with asteroid 2012 DA-14 passing very close to the Earth for an asteroid of that size (150 meters or a half-a-football-field in size); AND we have a small, 15-meter object – which I would call a tiny asteroid – actually hitting the Earth at a shallow angle and creating a significant explosion.  This is the largest recorded event since the Tunguska explosion in 1908.  This was very large for a meteor, a meteorite hit or fireball.

But let me talk a little bit about the DA-14.  It has already passed close approach; we are continuing to track it; in fact, I believe we have a live feed from this La Sagra Observatory, which is the place where it was discovered just about a year ago.  So we can see the object on the screen, as you can see right now; it’s moving; it’s a little streak because of the exposure that’s being taken; and it’s moving quite rapidly for an asteroid.  This is very unusual.  And the reason for that is that it’s passing so close to the Earth.  And it is passing the Earth at 17,500 miles an hour, but it’s on its way out now.

I should mention that USTREAM TV, USTREAM dot TV slash NASA dot JPL. JPL 2, excuse me.  So that’s where you can take a look and see a live shot of the asteroid.  The asteroid has passed the Earth, it’s on its way out, and it won’t return this close for many, many years.

Regarding the Russian explosion: there was a shock wave.  Why is there a shock wave from something coming in like this?  I have to say: an asteroid… asteroids enter the Earth’s atmosphere at a tremendous speed: 40,000 miles per hour, which, by the way, is actually much faster than the DA-14 is passing the Earth.  It’s an incredible speed; and in order for the tiny asteroid to slow down, the atmosphere will absorb that energy, O.K.?  So that it’s emitting the energy as heat and it’s emitting the energy as light.  The event must have been brighter than the Sun, if you were there to watch it.  It’s just incredible.  Asteroids… tiny asteroids the size of this one that hit over Russia this morning hit the Earth on average about once every hundred years.  So as you can see, the last recorded one that was of this size was a 1908, Tunguska explosion.  These are rare events  and its an incredible coincidence to have them happening on the same day; the Russians’ event – the fireball – is not related to the DA-14 asteroid in any way.  And that’s the end of my report.

Media questions:

Leonard Davis:  Space.com/Aerospace America; everybody calls this a wakeup call, what action should be taken by the Congress?

Paul Chodas: These are rare events, once every 100 years; I would say asteroid that hit over Russia was a very tiny asteroid; one like this from daystime sky virtual impossible to detect; NASA knows about 95% of asteroids but tiny ones like this are very hard to find

NBC News:  (Alan Boyle?)  DA14: On basis of observations that have come in is there anything new to say about this asteroid or is it what you expected?

It is too early to say; brightness profile close to estimates; most important immediate data Goldstone [radar?] measurements; [we hope to] release a picture of the asteroid tomorrow.

[Brian Asab] Wash Post: Paul; Colleagues in Vienna [meeting today] talking about international cooperation on international deflection efforts;

Paul: Yes there is meeting, this is international problem that has international implications; if asteroid hit it could hit anywhere; could we deflect? These questions being asked.  These are questions being addressed on intl stage.

Mariam Kramer Space.com:  How this blast ovr russia compares to Indonesia 2009?  How long trail from meteor over Russia was?

Bill:  The blast over Russia 4-5 times more powerful than Indonesia maybe more.  Meteor was abt 30 seconds, 10/mps, trail 300 miles long.

Irene Klaz Reuters;  When you said [an object the size of the] meteor over Russia could be found; what about if there was any observatory that could sense infrared was it too small to be detected by that?  If Congress says “what could we do about that” what would you say?

Paul: This object… IR detections from space is an option to detect these objects…

Bill:  NASA has recognized that asteroids that meteoroids and asteroid debris pose much greater problem than was previously thought.

Peter Speck, Christian Sci Monitor:: Paul; how do you work backwards from observation of event to estimate of size and mass; what was composition of this?

Paul:  The fact it broke up gives us some information on [the] composition; probably not iron-nickel like Chikoti-Malin 1947 over USSR

The principal source of info is by infrasound detectors on ground which measure pressure waves; give rough idea of amt of energy released.

Bill Harwood, CBS News;  What is infrasound network?

Bill: was established to monitor for nuclear explosions [after international] ban of surface explosions.  Detect big explosions in atmos; 300 kilotons, this is similar to nuke explosion in magnitude.

Naomi Sect, AFP: Can you sketch trajectory?

Bill:  Asteroid over Russia orbit indicates 2.1 yrs to go around sun once; out at farthest dist from Sun 1 yr ago in main belt 1 yr ago.

Paul: It was in orbit that crossed Earth’s orbit.  Asteroid belt is source of near-earth objects.  The asteroid belt would have formed a planet but large planets like Jupiter kept asteroid belt from forming [into] planet.

Leo Enreid, Irish TV;  Shock wave: was this “the shock heard ’round the world”? Was it a shock picked up by infrasound networks at great distances around world?  I heard 5 maybe 6 distinct explosions  I’ve heard about things like “pancaking”, what could have cause 5 or 6 distinct explosions?

Bill: As far as to 4 infrasound stations detections; haven’t polled all the infrasound stations; Early data from 4 infr stations nearest to event, whether it was heard on all we dont know

Paul:  I believe that [what happens is that the] atmosphere protects us so it disrupts asteroid as it comes in, divides [it] into multiple meteor[ites] so that is one possible source of multiple shock waves

Bill Dennison 21st Century Science and Technology:

Is there discussion of operation to defend planet?  Not looking for objects this small?

Russian Deputy Prime Minister responded to event by saying that the US and Russia should cooperate to stop impacts like this happening

Paul: Defending Earth from objects like this one is challenging, not currently our goal.  NASA is not looking 4 these; even DA14 is [borderline] too small for NASA search at this time;  In order to defend earth, the problem there would be to find these things early enough to do something; even though smaller ones [like this one are] easier to divert they are harder to detect; we are focusing on larger asteroids first, they are most hazardous.  One today was moderate destructive power.

Roxanne Palmer, Intl Business Times:  Is this just coincidence that these happen in Russia or is it because [Russia has] such a large land mass?

Paul: You hit the nail on the head, Russia is a large landmass, Tunguska, 1908, Malin 1947, and [again] today it is an amazing coincidence.

Ken Chang, NY Times;

Number of asteroids weight-wise per year?

Bill: 80 tons of meteoritic material per day; millions of very small meteors striking earth per day, big ones like this every 50-100 yrs

Paul: Small objects of basketball size every day, car-sized every month or two.

Paul Fraze , The Verge:  When it comes to detect an object like the one today, you require spacecraft we don’t have currently orbiting right now.  Private companies say they can do a better job of detecting.  Is private sector something you look to to do this?

Paul: Im not personally involved in these private efforts, they have potential, but funding is a question, an issue to discuss.  As far as getting resources from asteroids, is that viable? I can’t really speak to that.

Q: In spite of it being small, it caused a lot of damage on ground, so for purposes of detecting, not mining, the smaller size objects, what would the spacecraft need to be in order to pick up these things in terms of detection?  Is there any role private ssector could play?

Paul: I cant really speak to, its a challenging problem to find [something the size of] DA14 let alone the one over Ural Mountains.

Q: What kind of craft would be necessary?

Paul:  I believe a good way is to search for them in infrared, I can’t say what is the best way, [if you]call me later [we could discuss this in more detail].

Carolyn Johnson, Bost Globe:  [I just came in to the conference so this may have been answered already:] How much energy was released [in the explosion over Russia]? What would happen if something like this exploded over a densely populated area?

Bill: It was 300… I’m getting estimates now that it was up to 500 kilotons and it WAS over densely pop city.. 12 to 15 miles above ground

Jackie Goddard, Times of London;  Clarify 95% of meteors detected that have come through vs total number of meteors out there?  Is there an official search for this [Russian] object?

Paul:  When we talk of 95% completion rate Spaceguard Survey has been going on for 15 years, our original goal was to find 90% we have found 95% of large asteroids.  Near-Earth objects [are not objects that are going to hit the earth], [their orbits take them through the inner solar system as close as] 1.3 times the Earth’s distance to the Sun.

When we talk about near-Earth objects they are not all headed toward Earth.  “There are no asteroids that we know of that are headed towards the Earth for certain.”

Bill:  This meteor was not an iron meteor, it was a stony.  Its not a Martian meteorite, my guess this would be stony meteorite, maybe a chondrite, but we dont have the info to say what type this was, it’as probably going to be common, stony meteorite, 95% of meteorites found are common stony [type]

Andy Shostak ELS; How do you know there’s no relationship between DA 14 and the one that hit Earth today?

Paul: [In the event in Russia today] direction of approach was north-to-south [as best as we can tell from watching the videos] from YouTube; velocity was much greater than DA14.  [Russian meteorite] orbit was from asteroid belt; DA14 orbit is very Earth-like, orbits are very different.

[Source: NASA, USTREAM, http://www.nasa.gov/news/media/newsaudio/index.html%5D

NASA Teleconferences on Mars: Don’t Expect “Hallelujah” Moment From Us

Well it looks like our rather bold assertion that NASA had found fossils on Mars was a trifle inaccurate.   And, as we thought about it a bit more, we realized that it would be impossible to deduce from mere photographs alone, the true nature of anything that we were seeing in the raw images being radioed back to Earth from the Curiosity rover traversing Yellowknife Bay in Gale Crater – no matter how awesome the images looked.  And we realized what a cheap way it was to get people to visit our website!  Ha ha!  Got you!  Well, maybe a few dozen of you, anyway…  it didn’t work too well, actually.  We really did believe that those photos were something quite extraordinary, though.  Well, they weren’t.

Today, NASA’s Mars Science Laboratory team held another very interesting teleconference  to describe their latest discoveries on Mars – but they weren’t primarily interested in our “barnacles” – which turn out to be spherical concretions called “spherules” like the ones discovered by the Spirit and Opportunity rovers years ago, but with a different mineral composition.

No, today, the NASA scientists were more interested in describing deposits of calcium minerals deposited in fissures all over an area they have named “John Klein”, in tribute to the former deputy project manager of the MSL who tragically passed away in 2011.

We saw these things before, and they intrigued us as well.  But they definitely looked more inorganic than the “barnacles” we thought we’d spotted.  Which only goes to show what we know about Mars geology!

Both of these features – our non-barnacles and the fissures or “veins” of whitish minerals, are described as providing strong evidence of the precipitation of minerals from water.    It’s a sign that, not only was there water flowing for unknown periods of time here in Gale Crater, but that these minerals that were deposited in these fissures came from somewhere else, transported by that water after the rock formed and cracked.

These veins were blasted by Curiosity’s laser and analyzed for their chemical content.  It turns out that they are composed of “a calcium-bearing mineral”.

This photo shows a sort of side-view of one of the “veins” of this calcium-bearing mineral.  It’s got an interesting “cauliflower-like” appearance:

Side view of exposed calcium-mineral "vein"

Side view of exposed calcium-mineral “vein” (white “cauliflower-like” material on left of large rock in center of photo).  Credit: NASA/ JPL-Caltech/ Malin Space Science Systems

This is cool stuff.  But what does it all mean?  Is this in any way proof that life existed on Mars?  When will scientists be able to make an announcement as world-shaking as that?

The answer, we found, is that they are not likely to make such an announcement.  In the previous MSL press conference, held at the American Geophysical Union’s Fall Conference in San Francisco December 3-7, 2012 – you know, the one at which the NASA team was supposed to make a world- historic announcement of some sort, but didn’t – Drs. John Grotzinger and Paul Mahaffy explained why it’s not likely that any one discovery is going to provide that type of a moment – because scientific inquiry simply doesn’t proceed in that way.

These remarks are somewhat lengthy, but they are so important for people to understand if they don’t want to keep jumping to ridiculous conclusions like we tricked ourselves into making this past week.   It will not be the results of a single experiment that will lead to these big, overarching discoveries, but the sum total of a large series of experiments made by the entire science payload of Curiosity that will allow the science team to amass enough compelling evidence to make well-founded assertions about such things as whether or not signs of ancient life on Mars have been discovered.   We learned so much from these remarks that we took the time to produce a transcript of the comments made by the two scientists at the AGU meeting, which we present to you with no further adieu.  Science proceeds “at the pace of science” as Dr. Grotzinger says; it’s a slow, methodical and careful process designed to obtain real rather than imaginary results.   So be patient!  We wish we had seen this video before we wrote that last article!   Enjoy!

Excerpt from John Grotzinger, Paul Mahaffy remarks at AGU Conference, San Francisco, CA, 3 December, 2012

00:27:50  “OK, so now I want to move on to a somewhat different subject that we call our ‘Three Months of Terror’.  Everybody’s seen that ‘blue-shirt moment’ where everybody was jumping up and down celebrating the successful “EDL” [entry, descent and landing – ed.] system.  Ours really isn’t so much ‘three months of terror’ as it is ‘three months of tension’.  Every day we turn on an instrument; we do the electrical baseline check – it looks like it’s gonna work, but you don’t really know what it’s gonna work until it’s actually done a measurement.  And then once you’ve done the measurement, you wonder how well it’s done compared to all the calibration and baseline testing that you’ve done before you launched the spacecraft.  And so, each day we go through that; and as we turn these on – as one of our team members from Texas decided to call them – we have a ‘hootin’ and hollerin’ moment’; and everybody’s jumpin’ up and down in the science team and we get all excited about that.

“But in the end, what basically happens, and with the SAM [Sample Analysis at Mars – ed.] instrument in particular… SAM just comes last.  It’s at the end of the sample processing chain; it’s also an extremely complicated instrument – it’s practically its own mission… and when it works for the first time we have a ‘hootin’ and hollerin’ moment’; but when it works for the second time, you get something that all scientists live by, which is a ‘repeat analysis’.  You see that what you saw the first time is probably not going to go away.  And then when you do the third sample and the configuration is pretty much the same it was the first time, you believe maybe this just might be one for the history books, that this is going to stand the time of test [sic] as a legitimate analysis on the surface of Mars.  That’s basically where we were at with that excitement by the Science Team.

“So the nature of scientific discovery, especially in this business, is also very important.  We live by multiple working hypotheses: as Paul mentioned, even though his instrument detected organic compounds, first of all we have to demonstrate that they’re indigenous to Mars.  Then after that, we can engage in the question about whether they represent the background fall of cosmic materials that are organic in composition that fall on the surface of every terrestrial planet; and then after that we can begin into the more complex questions of  whether or not this might be some type of a biological material.  But that’s well down the road for us to get to.

“And, finally: serendipity.  As any of us that have worked on the Earth understand: on a planet that is teeming with life, you can go out into rocks that are billions of years old, and the probability of finding something that is actually a sign of life – or even something as simple as an organic material – those discoveries are so rare that every time we find one it makes it into ‘Science’ and ‘Nature’ [universally respected peer reviewed journals – ed.].  Every new discovery… new occurrence is actually a major discovery.  So we have to take our time, and it’s gonna take a bit of luck; but it is serendipity because we’re gonna think it through well ahead of time and go about this exploration in the most intelligent way that we can, using all of our instruments.  What this mission about [sic] is integrated science; there’s not going to be one single moment when we all stand up and, on the basis of a single measurement have a ‘halleluja moment’.  What it’s gonna take is everything that you heard by my colleagues and all the other P.I.s [principal investigators – ed.] that build all their instruments, we’re gonna pull it all together and we’re gonna take our time, and then after that if we’ve found something significant, we’ll be happy to report that.

“So finally, then: where are we headed?  Well, at this point, basically, our car is ready to go.  This is a car that comes with a ten-thousand-page user manual that we also have to write as we read it; and, you know, that’s where the patience comes in.  But we’re getting closer; we’re getting ready to go here now; we have one major test ahead of us which is the drilling; and we hope to do that and get started on that before the holidays begin; and then sometime early next year we’re gonna pack it up and start driving towards Mt. Sharp, which is the reason we picked this site; and it has what, from orbit, looked like a lot of materials that we’re interested in.  So we’re gonna load up the car with the science team, uh, you know… we’ve been at the gas station; we’ve gassed it up, checked the oil, uh, you know, we’re gonna kick the tires around a little bit but then we’re ready for our trip and that’s when our science mission of exploration really gets into full gear.”

[Questions from audience:]

Q: “Hi, I’m Alex Witze with Science News for Dr. Grotzinger: Can you just take us through how you go about figuring out whether these organics are indigenous to Mars or not?  Just [employing? in boring?] chemistry detail.”

A:  [Grotzinger]: “I’ll pass that one to Paul, but lemme just first reiterate the sort of ‘high level’ approach before Paul gets into more of the details of the chemistry.  So: you make a measurement… and what we know is that the instrument is performing perfectly well; it’s very, very sensitive, so that we know that the instrument has detected simple organic molecules.  Then after that, you have to do a series of tests to verify that the organics that you’ve measured have not come from Earth; and there are a number of ways that we could bring them with us.  Remember: the reason that we chose the soil is to try to clean out all that hardware; and we cleaned it as best as we can on Earth but there’s no guarantees; and so we pass soil through it, shake it around, and then dump it out; take another gulp of soil, shake it around, dump it out.  We try to get it as clean as we can, but it could be riding along with the hardware.

“And then, within the instrument itself: there’s always a little bit of stuff that comes along every instrument that we make on Earth.  Even the most sensitive instruments carry materials along with them that you have to work through and understand their properties.  And then after that, if we believe that it’s indigenous to Mars, then we have to go through a second level of triage, which is to say: ‘O.K.: it’s on Mars, but maybe it didn’t come from Mars; it could be a material that comes from the cosmos.’  A lot of primordial material, as we know… there’s carbonaceous chondrites that, in some cases, have quite complex organic molecules in them.  And then after that then you begin by the context; and this is where the other instruments really come in and are so important because they’re the things that allow us to establish that maybe this isn’t something that actually came from space but this was actually something that formed in the environment, where the particles that make up the rock, where they were also accumulating… this was something that was being formed at the same time.  And then you have a pathway to decide whether or not those formation pathways are abiotic or may be, in the end, biologic.  And so there’s… as you can see, it’s a complicated decision pathway there and we have to explore each one systematically.  But, I’ll turn it over to Paul.”

[Paul Mahaffy]:  “Yeah… I mean… we’ve gone to great care with this mission to address the potential confusion that might be caused by terrestrial contamination.  The materials that we brought to mars with us – we’ve done a lot of analysis to understand what kind of gases they release that we might see.  We have a… what we call an ‘organic check material’: it’s a very pure vitreous silica glass; and we have that doped with [deliberately infused with – ed.] four very distinctive fluorocarbons.  And so, if we’re looking for terrestrial stuff not just inside of SAM, but stuff that might come from the sample processing chain, what we can do in the end to avoid confusion is we can drill into one of those five organic check materials, run that sample through, and really treat that as a blank.  And if we see the same stuff that we saw that we thought might be from Mars, from either some drilled rock or from soil, then we gotta say: ‘Hold the show a minute; this might be terrestrial stuff.’

“We do, even more routinely, we run blanks on… internal to SAM.  For every experiment that we did here, we ran, essentially, a blank beforehand and looked… there’s very trace residual amounts, for example, of our derivitization agent; a very little bit of vapor shows up.  We’ve seen some of this as we calibrated the instrument and so on.  That’s actually great ’cause it shows us that the chromatography  is working beautifully; but then if we see that when we have a solid sample in our cup, we go back to the blank and we said: ‘Oh, did we see that compound?’  And if the answer is ‘yes’, then it’s not from Mars.

“So, we’ll do all of those things; but what really helps also is the great flexibility of… you saw those bars [see figure 1 – ed.].  We can select different slices of evolved compounds to analyze with chromatography; we can have different temperature sequences on the sample, to release organics.  And so all those things combine, really, to get a story on whether, uh… give us confidence if what we’re seeing is from Mars or not from Mars.  So that work is ongoing.”

Q:  “Emily Lakdawalla from the Planetary Society; this question is for Paul:  I’m wondering how many of the compounds you’ve identified so far are ones that would be present as those compounds in the soil or if they’re all evolved from other compounds that are in the soil – and particularly interested in the chlorine compounds and the hydrogen sulfide.”

A:  [Paul Mahaffy]:  “Yeah… the question really relates to whether the compounds that we were showing might exist in the soil or whether they might be made as we do our experiment.

“It’s certainly very possible that there… in fact I would suggest very likely that they are made.  As we heat the sample up, the simple chloro… single carbon compounds are being released at the temperature that this oxygen signal is coming up… potentially a calcium perchlorate.  And so, with the high temperatures and chlorine being released, perhaps hydrogen chloride being released, it’s very reactive.  And then it latches on to whatever carbon is there and forms these very simple compounds.  So it’s very, very possible; I would say even likely that those compounds were not existing and we really made them as part of our experiment.”

[Transcript produced by Independent Workers Party of Chicago, 15 January 2013.  All errors are our own.]

First Fossils Discovered on Mars? NASA Mars Rover Finds Rocks With Strange Barnacle-like Protrusions

NASA’s Mars Curiosity rover has discovered a very interesting sedimentary rock formation in the “Yellowknife Bay” region of Gale Crate that contains blister-like bubbles that look very much like barnacles.   We have no idea what these rocks are or what these embedded bumps are, but if this was found on Earth in sedimentary rock, it would most likely be described as some type of fossil.  See for yourself.  Look at the rocks just above the steel frame of the Curiosity rover on the right of the image.  Very interesting find!  Can’t wait for the next briefing from the rover’s science team!  Could these be fossilized bubbles in the mud?  Or are these the first actual fossils discovered on Mars?

[Source:  http://mars.jpl.nasa.gov/msl-raw-images/msss/00152/mcam/0152ML0846000000E1_DXXX.jpg%5D

This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA's Mars rover Curiosity on Sol 152 (2013-01-09 07:41:32 UTC) .  Image Credit: NASA/JPL-Caltech/Malin Space Science Systems

This image was taken by Mastcam: Left (MAST_LEFT) onboard NASA’s Mars rover Curiosity on Sol 152 (2013-01-09 07:41:32 UTC) . Image Credit: NASA/JPL-Caltech/Malin Space Science Systems



SPOILER ALERT! NASA Squashes Rumors of Impending Announcement of Major Discovery on Mars

The capitalist news media has been pushing rumors that NASA was about to hold a news conference announcing that a major discovery has recently been made on the Red Planet by the Mars Science Laboratory (a.k.a. “Curiosity”).

This rumor-mongering was started, inadvertently, by Dr. John Grotzinger of Caltech, who made some intriguing allusions to big news coming out of the MSL program just in time for X-mas during a NASA teleconference a few weeks ago.

Today, NASA published a press release downplaying the rumors, which were beginning to focus on an upcoming news conference to be presented by MSL scientists at the fall meeting of the American Geophysical Union, which will be held in San Francisco on December 3rd.

Today’s NASA press release stated baldly that “[r]umors and speculation that there are major new findings from the mission at this early stage are incorrect.  The news conference will be an update about first use of the rover’s full array of analytical instruments to investigate a drift of sandy soil. One class of substances Curiosity is checking for is organic compounds — carbon-containing chemicals that can be ingredients for life. At this point in the mission, the instruments on the rover have not detected any definitive evidence of Martian organics.”

Audio and visuals from the 3 December NASA/AGU press conference will be broadcast live on USTREAM.  The text of today’s no-fun bubble-bursting press release from the wet blanket brigade over at NASA is available here.

So tell everyone to put their tinfoil hats back into storage – “little green men” have not been discovered on Mars.  And the religious leaders of the world can breathe a big sigh of relief – for now.  Life has not been discovered on another planet, utterly destroying thousands of years of mythologizing “the uniqueness of God’s creation here on Earth”.



NASA’s “Curiosity” Rover Confirms: Water Once Flowed on Mars; Now “The search for habitable environments” Begins

Remnants of Ancient Streambed on Mars discovered by Mars Science Laboratory “Curiosity” rover. Photo credit: NASA/JPL-Caltech/MSSS

In the first of what we hope will be many blockbuster discoveries, the Mars Science Laboratory’s  “Curiosity” rover science team, after less than 2 months on the surface of Mars, has announced that they have discovered an outcrop of conglomerate rock that proves that water once flowed “vigorous[ly]” on the surface of the Red Planet.  They describe it as an “ancient streambed”.  Not only that, but at the end of the press conference, Dr. John Grotzinger, the Project Scientist for the Curiosity rover programme stated that “we have now discovered evidence for water, and what we’d like to do is to begin to characterize habitable environments” [our emphasis – IWPCHI] that might have existed on Mars while this water was flowing over what appears to the NASA team to have been an as yet unquantified but extended period of time – definitely more than just “thousands of years”!

In the press conference held today (Thursday, Sept. 27), a team of NASA scientists made the announcement.  Dr.  Grotzinger,  made the initial presentation:

“As we were driving along on the way to Glenelg, we encountered some really interesting outcrops that were surprising to the team.  And in the first graphic, [see photo above] what you’ll be able to see are these outcrops.  And this is one of them [shows PIA16156].  It’s named “Hottah”… and to us it just looked like somebody came along the surface of Mars with a jackhammer and lifted up a sidewalk, uh, that you might see in downtown L.A., uh, in sort of a construction site.  So you can see this rock unit; and it’s about 10-15 centimeters thick, so it’s sorta on that scale [holds up thumb and index fingers to indicate what 10-15 cm looks like], and it’s tilted: in the perspective you’re looking at it’s tilted off to the right; and what it does is it exposes the materials that, that make up this slab of rock.  And there’s a couple of these; and what we’re gonna be presenting today, my colleagues here will show you, what represents the consensus opinion of the science team: that this is a rock that was formed in the presence of water.  And we can characterize that water as being a “vigorous flow”, on the surface of Mars. And we, we’re really excited about this because this is one of the reasons that we were interested in coming to this landing site was because it presented from orbit quite a strong case that we would find evidence for water on the ground.  Turns out, that in fact we landed on this unit.  And this makes a great starting point for us to do more sophisticated studies using the rover payload.”[Source: USTREAM.TV,  “NASA Mars Rover News: Ancient River Streambed” Recorded live on September 27, 2012 12:46pm CST]

Over the past 6 years, the Mars Reconnaissance Orbiter has taken numerous spectacular high-resolution photos of Mars which showed what appeared to be unmistakeable evidence that liquid water once flowed – and possibly still today in some form flows, on Mars.  Features were spotted that showed what looked like traces of water seeping out of cliffs; stream and river beds were found, and many other geological features indicated that it was a near-certainty that water has flowed on Mars and may still be flowing.  Later, the 2 earlier martian rovers, “Spirit” and “Opportunity” also took photos and made observations of regions on Mars that contained rock formations and mineral forms that most likely were created in the presence of water.  Now, we have clear evidence that small grains of sand and larger pebbles and even what are described as “cobbles” contained in a slurry of what is similar to very coarse concrete were moved and brought together in a matrix in a form extremely common, seen on Earth in stream and river beds all over our planet.

When NASA scientists were looking for a landing site for “Curiosity”, they sought out locations to land that would place the rover within a short driving distance from these water features.  The selection of the apron of what appeared to be an alluvial fan at the foot of Mt. Sharp on Mars seemed well-suited for finding water features such as the one announced today.  But most surprisingly, Curiosity, it turns out, landed RIGHT ON TOP of an ancient stream bed!  The rockets that were used to gently land the rover on Mars blew away the surface dust from the top of the landing site, revealing the first stream bed outcrop practically under the rover!  To say that this is a wonderful surprise is a vast understatement.  It’s an extraordinarily lucky occurrence that just continues the incredible success of the MSL project so far.

Dr. Mike Malin of  Malin Space Science Systems, San Diego, the designers of the magnificent cameras on both the Mars Reconnaissance Orbiter and the “Curiosity” rover, made a presentation at today’s news conference as well, in which he compared rock outcroppings found here on Earth that were created by flowing water and compared them to the rock outcrops discovered by Curiosity.

“I’m going to show you how we had anticipated, with the design of the cameras, this type of outcrop; and how, when I briefed the media at the launch briefing for science on the 23rd of November, I actually used as an example, this would be the type of rock that the [mast] cameras would excel on.”

First, Dr. Malin showed a slide depicting a rock outcrop that is composed of conglomerate.  “This is a conglomerate bedrock outcrop in central Utah.  It’s about 100 million years old… and it’s really a rock made out of a bunch of pieces of gravel.  […] The white squares are enlarged at the bottom of this [image]… if you look at the [close-up] on the [lower] right, you can see there are a few bands of light-toned intermixed with a sort of speckly texture… the speckly texture is the conglomerate.  It has lots of little pebbles in it.  The lighter toned things are sandstone.  So there was sand moving down along a stream, along with cobbles [and] little pebbles…”

Images of rock outcrop just south of Green River, Utah, of ancient (Jurassic Period, around 150 Million years old) rocks exposed by erosion of a large amount of sedimentary rock in the area. Credit: NASA/JPL-Caltech/MSSS

Close-up of Green River, Utah rock formation showing areas of deposition of fine-grained sediment and areas of gravelly deposits. Image credit: NASA/JPL-Caltech/MSSS

Describing the photo above, which is an extreme close-up of the same Utah outcrop of conglomerate taken from 10 meters away, Dr. Malin said: “these are water-lain sediments that were then turned into a rock.  And then that rock has been eroded away, showing us this large outcrop.  The next slide shows a feature on Mars…

Curiosity rover photo showing the blast scour left by it’s descent stage’s rocket engines. This was one of the first photos taken by Curiosity of its landing site.
Credit: NASA/JPL-Caltech/MSSS

“…our first view of this similar type of rock came where the landing engines blew away the dirt and unveiled this layer beneath the surface debris; and you can see in the upper left corner of the enlargement of that white box that shows that there’s a layer there that seems to have rocks embedded in it.  We have a higher resolution view of that in the next slide, which was taken with the MASTCAM-100;

Close-up of blast scour from Curiosity’s descent engines which revealed conglomerate rock formation from ancient stream bed. Credit: NASA/JPL-Caltech/MSSS

“…and you can see, in the lower left now, that the gravelly surface and the gravel at the edge of this layer.  This is a relatively thin layer of this outcrop of the material that you’re gonna see in a few minutes.  But, basically, we had anticipated and discussed – both before the launch and right after landing – that where we were going should have these “water-lain” sediments that had been turned into rock.”

Next up was Rebecca Williams, Senior Scientist at the Planetary Science Institute:

View of ancient Martian stream bed, dubbed “Hottah” by NASA’s Mars Science Laboratory team. Image credit: NASA/JPL-Caltech

“…This is the “Hottah” exposure that John introduced you to… we were really just extremely fortunate to have such an ideal viewing geometry of this material.  This is a fractured rock outcrop that has been naturally tilted… we acquired these images on Sol 39 [the 39th Martian day that Curiosity has been on the surface of Mars]… and I’m going to zoom in on the lower left-hand  portion of this [image].

Close-up of “Hottah” outcrop, an ancient stream bed discovered by NASA’s “Curiosity” rover, showing varied size of materials in this layer of conglomerate. The circled portion is of a large pebble encased in the layer. Image credit: NASA/JPL-Caltech/MSSS

“…what you see is: this rock is made up of rounded gravels – there’s one circled for you at upper right – and a matrix that’s very sand-rich… these attributes are consistent with a common sedimentary rock type called a “conglomerate”.  Now, the clast that is circled is about 3 centimeters across… and you’ll see that the perimeter has a very rounded shape; it’s been worn by abrasion in a sediment transport process.  And you’ll also notice the gravels sticking out from the rock; and over time, erosion is working on that rock face and liberating some of the gravels, and they’re falling down and accumulating on a pile at the base of the outcrop.

A second exposure of this very same material we saw on Sol 26, and imaged it with the MASTCAM-100 (the narrow-angle) on Sol 27…

Second outcrop of ancient Martian streambed (dubbed “Link” by the science team working on NASA’a Mars Science Laboratory) shows clean exposed cross-section of the conglomerate layer indicating clearly that the small pebbles and larger rocks in the layer had been transported by “vigorously flowing” water. Image credit: NASA/JPL-Caltech/MSSS

“… and this outcrop’s name is “Link”.  You see the very similar textural properties that we saw at “Hottah”; again, very rounded gravels in a light-toned sandy matrix.  And, again, we have that gravel pile that’s adjacent to the rock outcrop.  So, by looking at the size and shape distribution of the gravels that are not only in the rock outcrop but those that we infer were liberated from the rock outcrop there on the surface, we can get a good idea of the range of gravel size and shape properties that you see there.

“On the next slide, we’ll zoom in…

This set of images compares the Link outcrop of rocks on Mars (left) with similar rocks seen on Earth (right). A typical Earth example of sedimentary conglomerate formed of gravel fragments in a stream is shown on the right. Rounded grains (of any size) occur by abrasion in sediment transport, by wind or water, when the grains bounce against each other. Gravel fragments are too large to be transported by wind. At this size, scientists know the rounding occurred in water transport in a stream. Image/caption credit: NASA/JPL-Caltech/MSSS and PSI

“…and there’s another one of these rounded gravels that’s about 1 centimeter across (that’s roughly the size of a plain M&M [Nice comparison! – IWPCHI]); and geologists are interested in rounded gravels because they tell you that those particles have been subjected to a sediment transport process, either by water or by wind.  And, so, typically, you start off with a very angular rock fragment, and as it’s transported it’s bouncing along, interacting with other grains and the surface, and that wears away the edges until you have a very smooth surface such as you see here in this pebble [she holds up a small, rounded stone taken from a streambed here on Earth].  And the key components of these gravels that we’re seeing here are: one, the rounded shape, but also the size [emphasis in voice – IWP].  These are too large to be transported by wind: the consensus of the science team is that these are water-transported gravels in a vigorous stream.

“On the right of the graphic, you can see a typical streambed deposit: it’s a gravel conglomerate that has gravels of the same size and roughly the same roundness as we see on Mars.  And so this is just wonderful “ground truth confirmation” of water-transported material that was predicted based on analysis of orbital images.” [!!! – IWPCHI]

The next scientist up to speak at this amazing news conference was Dr. William Dietrich, (Dept. of Earth and Planetary Science, University of California, Berkeley):

“So, I’m going to ask the question: ‘Where did these gravels come from, and what was the environment like at the time of deposition of the deposits that we now see at the rover site?’  And to do that, I’m going to use a term called ‘fan’, and, specifically ‘alluvial fan’; and to explain that, I’m going to take you on an aerial tour: first through Death Valley [desert in California, USA – IWP] and then back to Gale [Crater, where the “Curiosity” rover is situated -IWP], and connect the dots between the fan and  the deposits we see.  So,  if I could have the first video… [MPEG-4.  Additional videos are available here:  http://mars.jpl.nasa.gov/msl/multimedia/videoarchive/– IWP]

“… I introduce you to an area you’re familiar with: there’s Los Angeles, and there’s Las Vegas, I-15 [Interstate Highway 15 – IWP] in between.  And we’re going to take a flight just to the right of Zzyzx [desert town in California – IWP], and where there are six fans (outlined in white) that illustrate the form and process that I want to talk about. [Video starts and he narrates] So we’ll zoom in… and you’ll see the four [alluvial fans – IWP] that are facing us: the white lines delineating the lateral boundaries of sediment deposition that has occurred as a consequence of sediment and water rushing out of the canyons that are on the hills there.  And we’ll now go up to the headwaters… and we see the stream confine the canyon.  And then it reaches the front of the mountain; and as water and sediment rushes out, it spills.  And as it spills it forms a sheet of water or it runs out as discrete channels.  And you can see them there: shifting right, shifting left.  As it deposits, it elevates and shifts right, left, back and forth, building the fan structure that’s so characteristic and so identifiable.

“We rotated it across this white-toned fan; and now we’re settling down and looking back.  So now you see the fan shape, just like a fan that you would use to cool yourself off on a hot day.  You see the white outlines of the structure; and you see how it’s a result of water and sediment pouring out of the canyon.

“So if I could now go to the next video, [this “next video” is edited together with the first video in the link above – IWP] we’re going to go to Gale Crater [on Mars – IWP].  And we’re flying from north to south; and you see (in red lines) the lateral boundaries of a fan just like we saw in Death Valley.  And we’re looking down at a canyon:  a canyon that is about 11 miles [18 kilometers – IWP] long, 2000 feet [600 meters – IWP] wide and about 100 feet [30 meters – IWP] deep.  And that canyon was cut by stream flows.  And that stream and sediment then entered the crater rim wall and spilled out left and right; and the blue lines delineate distinct channels that we can recognize.  Fossil [stream – IWP] beds if you like.  We look at these channels and we see that they cut across the fan system.  And to us they suggest that this fan did not form in a single instance but this records some duration of a process.

“Now, we find… we settle down, and there’s “Curiosity”: it’s about a two to four-mile [3 – 6 kilometer – IWP] hike from the nearest channel to Curiosity – all downhill.  So we think it’s reasonable to suggest that the water and sediment came down that fan that we see now… [referring to video – IWP] […]  And, looking back [referring to the video’s aerial view showing the alluvial fan system on Mars – IWP], you see a watershed:  you see a canyon; you saw a fan; you see channels.

“Now: what was it like then, if you were standing at, exactly, Curiosity’s site at the time of the sediment deposition?  And the next video will show that. [Shows a video taken with an underwater camera in a fast-moving stream on Earth, which is part of this video here]   So, here is water moving sand and gravel.   It’s a  vigorous sediment transport process:  bursts and sweeps of turbulence mobilizing, together, sand and gravel.  And, of course, the consequence of that motion is collision, breakage and rounding of particles.  And in a flow that we can estimate for the rover site, that might have been from ankle- to hip-deep and maybe moving a few feet a second.

“And we arrive now…

This image shows a dry streambed on an alluvial fan in the Atacama Desert, Chile, revealing the typical patchy, heterogeneous mixture of grain sizes deposited together. On Mars, Curiosity has seen two rock outcrops close to its Bradbury Landing site that also record a mixture of sand and pebbles transported by water that were most likely deposited along an ancient streambed. Image/caption credit: NASA/JPL-Caltech/UC Berkeley

“… at what the bed of the rover site might have looked like after the last flow (of course, visited by a few Earthlings).  That was the Atacama Desert [in Chile – he refers to the photo above – IWP].  You see the heterogeneous bed; you see the patches of sediment.  And what we can think about, then, is that we were in a watershed.  We saw… going from an uplands to a lowlands.  And we would start with a rock [places large, heavy, angular piece of stone on desk in view of cameras – IWP] that would be big and broken, like this.  And it would travel something like 20 to 25 miles [32 to 40 kilometers] and end up something small and rounded like this [indicating much smaller rounded stone on desk – IWP].

Going from this [indicating large angular stone] to this [indicating small rounded stone] is direct visual evidence of the wear by what we call “bed-load transport”: of the wear, particle collision and the transport by water to the site of interest.”

Dr. Grotzinger wrapped up the news conference with some interesting information regarding the upcoming experiments that will be conducted by the Curiosity rover:

“First of all, this represents a great collaboration between the Curiosity rover and the orbiters that are routinely mapping Mars.  Now, in the case of looking at the alluvial fan, we see that that’s provided by both the  “HiRISE”  imager, the CTX imager  [one of the instruments on the  Mars Reconnaissance Orbiter] , previous generations of imagers…  [the imagers – IWP] look at these features that geologists have long thought of as alluvial fans.  But now that we’re down on the ground with Curiosity we can see the textural evidence that Becky and Mike talked about where you see the individual pebbles, the rounding, the geometric relationship that they have to each other that gives us a sense for that.  So if we just go back one, please…

This map shows the path on Mars of NASA’s Curiosity rover toward Glenelg, an area where three terrains of scientific interest converge. Arrows mark geological features encountered so far that led to the discovery of what appears to be an ancient Martian streambed. The first site, dubbed Goulburn, is an area where the thrusters from the rover’s descent stage blasted away a layer of loose material, exposing bedrock underneath. The second feature, a naturally exposed rock outcrop named Link, stood out to the science team for its embedded, rounded gravel pieces. The final feature, another naturally exposed rock outcrop named Hottah, offered the most compelling evidence yet of an ancient stream, as it contains abundant rounded pebbles. The grain sizes are also an important part of the evidence for water: the rounded pebbles, which are up to 1.6 inches (4 centimeters) in size, are too large to have been transported by wind. The image used for the map is from an observation of the landing site by the High Resolution Imaging Science Experiment (HiRISE) instrument on NASA’s Mars Reconnaissance Orbiter. Image/caption credit: NASA/JPL-Caltech/Univ. of Arizona

“… we should be able to see where these different features occur on our route to “Glenelg”.  And so, “Golburn” was the outcrop that Mike talked about, the one that we got for free way back when when the thrusters blew the soil away.  And at that time, the team came up with a number of hypotheses to potentially account for this.  And then we had a lot of discussion about it; and then we worked our way to “Link”, where we were able to see the first of the outcrops that Becky talked about,  and we began to wonder about the streamflow option as being the most likely candidate.  And it was really when we got to “Hottah” where we saw this again, most clearly, that it was very easy to reach team consensus to come to you and present the story about where we are.

“Now the rover is about 3/4 of the way between “Hottah” and “Glenelg”; and we’re working our way down into that key area where these three terrain types come together.  So if we can go to the next one…

This image shows the topography, with shading added, around the area where NASA’s Curiosity rover landed on Aug. 5 PDT (Aug. 6 EDT). Higher elevations are colored in red, with cooler colors indicating transitions downslope to lower elevations. The black oval indicates the targeted landing area for the rover known as the “landing ellipse,” and the cross shows where the rover actually landed. An alluvial fan, or fan-shaped deposit where debris spreads out downslope, has been highlighted in lighter colors for better viewing. Elevation data were obtained from stereo processing of images from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. Image/caption Credit: NASA/JPL-Caltech/UofA

“… again, just to remind you, something that we showed you before we landed – in the press conference before then – we see the alluvial fan and “Peace Vallis” – which is now an official name that the IAU [International Astronomical Union – IWP] has approved as the entry point for water into this feature… what we were uncertain of at the time of landing was whether or not this alluvial fan extended all the way down into the landing ellipse.  And you see where we landed is quite a bit away from where you would identify – as Bill said, it’d be a few miles’ hike to get to the base of the alluvial fan.  So it looks like – at least intermittently – that that fan extended down to where the rover was.  That’s our most popular hypothesis right now for the team.

“The other part of the story that we talked about is in the last slide…

This false-color map shows the area within Gale Crater on Mars, where NASA’s Curiosity rover landed. It merges topographic data with thermal inertia data that record the ability of the surface to hold onto heat. Red indicates a surface material that retains its heat longer into the evening, suggesting differences relative to its surroundings. One possibility is that the materials that make up these soils and rocks have been more tightly bound together by mineral cements. The black oval indicates the targeted landing area for the rover, known as the “landing ellipse,” and the cross shows where the rover actually touched down at the Bradbury Landing site. An alluvial fan, or fan-shaped deposit where debris spread out downslope, has been highlighted in lighter colors for better viewing. This image was obtained by the Thermal Emission Imaging System on NASA’s Odyssey orbiter.  Image/caption credit: NASA/JPL-Caltech/ASU

“… where you now see the map of this feature called “thermal inertia”.  So we’re beginning to get a sense of what that might mean now, because – you see the “X” where Curiosity landed.  And you see high values of thermal inertia but not the highest values.  So we wonder what might cause this greater retention of heat.  And it could be because you’re dealing with materials that are consolidated. [Emphasis in voice – IWP]

“And what we haven’t told you today is anything about the rest of the payload – what we might measure in terms of the chemistry; what we might measure in terms of the mineralogy.  What we do know is: we go down towards Glenelg; we’re gonna go down towards that red patch, which is where the thermal inertia becomes the highest.  And so, our plan as we go forward now is to study the chemical and mineralogical attributes of these rocks, and see how water may relate to the cementation of these gravels to form a rock.

“And that’s really where it brings us, is to really the beginning of the science mission, where we have now discovered evidence for water, and what we’d like to do is to begin to characterize habitable environments [!!! EMPHASIS ADDED – IWPCHI].  And that requires using all of our payload, including the  instruments that measure the chemistry and the mineralogy.  So we’ll keep you updated as we go along with those measurements as well.”

[Sources:  USTREAM.TV,  “NASA Mars Rover News: Ancient River Streambed” Recorded live on September 27, 2012 12:46pm CST; NASA’s Mars Science Laboratory website.  All transcriptions of the Sept. 27th press conference were done by IWPCHI].


Watch NASA’s “Curiosity” Rover Landing Live from Mars Sunday and Monday, August 5th/6th

Once again, intelligent life forms on Earth will have an opportunity to watch a “live” broadcast from the surface of Mars as NASA’s latest Mars mission, the Mars Science Laboratory aboard the “Curiosity” rover touches down (hopefully!) on the surface of Mars inside Gale Crater.  The landing is scheduled to take place at approximately 05:31 UTC August 6th (12:31 AM US Central Time August 6th; 1:31 AM US Eastern Time August 6th; 10:31 PM US Pacific Time August 5th; 11:31 PM US Mountain Time August 5th).  The broadcast will be available on NASA TV (http://www.nasa.gov/multimedia/nasatv/index.html) and on USTREAM (http://www.ustream.tv/nasajpl).  We advise our readers to check out these websites well ahead of time in order to make sure that you have the software installed on your computer in order to be able to see the broadcasts.  Familiarize yourself with the sites at least a couple of hours before the event, and make sure that you have the web feed running long before the site gets blasted with hundreds of thousands of “hits” in the minutes before the scheduled landing.

This phase of the mission should be very interesting due to the extremely complex engineering solution created in order to land the “Curiosity” rover on Mars in one piece.  Unlike the previous two rovers, “Spirit” and “Opportunity”, which were packed inside a bundle of inflatable air bags and bounced across the Martian surface before successfully being deployed, this much heavier (1 metric ton) rover’s descent craft will be required to make a series of highly complex operations within a very tight timeframe in order for this craft to deploy to the surface of the Red Planet.  The most difficult aspect of the landing will take place as the descent craft, using retro rockets to stabilize itself above the landing site at Gale Crater, will attempt to utilize a device called a “sky crane” to gently lower the rover on cables down to the surface.  At the time that the rover touches down, the rocket-propelled landing craft will be too close to the rover momentarily; the blast from the landing craft’s rockets against the surface of the planet as it hovers during the “sky crane” operation will threaten to cover the rover with dust and perhaps small rocks that could damage it severely; so the cables will need to be immediately severed and then the landing craft will fly away to crash a safe distance from the lander.

NASA has produced an excellent video which describes the Mars atmosphere entry sequence to touchdown in Gale Crater, which has become something of an Internet sensation itself.  Dubbed “Seven Minutes of Terror” the video shows graphically how daunting the engineering challenges are facing anyone attempting to land a spacecraft on Mars.  The “solution” to this series of potentially spacecraft-killing problems selected by NASA will be, if successful, one of the most astounding achievements by any team of engineers involved in space exploration to date.  The video is absolutely a must-watch video.  It is designed to inspire a healthy respect for science and engineering in everyone who watches it; if you haven’t seen it, click on the blue link above and enjoy!  It is superbly done.

Speaking in the “Seven Minutes” video of the intricate series of planned maneuvers necessary in order to place the rover on Mars, Dr. Adam Steltzner of the Entry, Descent and Landing (EDL) team says: “When people look at it, uh… it looks crazy.  That’s a very natural thing.  Sometimes when we look at it, it looks crazy.  It is the result of reasoned engineering thought.  But it still looks crazy.”

To say that it would be a minor miracle for all this to happen flawlessly would be a vast understatement;  but NASA’s engineers appear confident that they can pull this off.

[The NASA website has a really amazing application with which you can track the spacecraft in real time as it lands on Mars.  It’s called “Eyes on the Solar System” and with it, you can use your mouse to zoom in on the craft as it approaches mars, view the landing site and zoom throughout the solar system.  It will give you the precise real-time distance between the spacecraft and Mars and there are buttons you can click on which will show you a preview of the Entry, Descent and Landing sequence!]

As fascinating as the scientific discoveries this rover can make will undoubtedly be (providing that it survives the descent to the surface intact) Curiosity will not, however, have the capability to confirm or disprove whether there has ever been life on Mars.  It will be able to perform several kinds of experiments that will provide tantalizing clues as to whether or not liquid water ever flowed in Gale Crater and it may perhaps be able to discern whether or not various types of organic matter were produced there.

The previous two rovers, “Spirit” and “Opportunity” were deployed perfectly and vastly exceeded their originally expected 90-day lifespan, providing amazing images of the Martian surface and scouring away surface dust from rocks in order to analyze their composition.   The two rovers made major scientific discoveries, including the confirmation that there was a period or perhaps periods where liquid water definitely flowed on Mars.  Clear evidence of serial deposition of sediment by water was seen in the geologic layers of  rock formations.  Late last year it was announced that the “Opportunity” rover had discovered unambiguous evidence that water had flowed on Mars: a vein of gypsum was discovered coursing through a rock deposit in Endeavour crater.

“This is the single most powerful piece of evidence for liquid water at Mars that has been discovered by the Opportunity rover… there was a fracture in the rock, water flowed through it, gypsum was precipitated from the water. End of story” Steve Squyres of Cornell University, Opportunity’s principal investigator, told the 2011 winter meeting of the American Geophysical Union.

This color view of a mineral vein called “Homestake” comes from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Opportunity.
CREDIT: NASA/JPL-Caltech/Cornell/ASU

Gale Crater, the landing site for the “Curiosity” rover, was chosen because it has one of the lowest elevations on the surface of Mars and is right on the border of a transitional boundary from the “southern highlands” to the “northern lowlands”.  At this boundary scientists believe that, billions of years ago, water flowed.  The object that crashed into Mars creating Gale Crater scooped out a tremendous amount of rock and soil, digging a hole, essentially, into which water was able to flow freely.  By landing “Curiosity” at the bottom of Gale Crater, scientists hope to be placing the craft smack in the middle of one of the best locations on Mars for finding proof of this theory.

Speaking at a press conference held by NASA on July 16, MSL Project Scientist John Grotzinger described the landing site: Gale Crater is “the width of the Los Angeles basin… and in the middle of it, we have a mountain called ‘Mount Sharpe’ [which has] 5 kilometers of relief on it.”  The scientists intend to spend a couple of months readying Curiosity for a trip to the base of Mt. Sharpe to take a close look at the exposed geologic layers of this huge mountain, “larger than any mountain in the lower 48 states” according to Dr. Grotzinger.  On the way, a number of instruments on board the rover will undertake experiments to determine the mineralogy of the crater and will analyze and photograph the region.

The NASA scientists had a number of landing sites to choose from that promised to contain interesting and varied topography and mineral deposits.  They narrowed down their search to just 4 sites and then selected Gale Crater for its unique combination of mineralogical, apparent depositional and geological characteristics.   The “landing ellipse” plotted out by NASA engineers – the rough location of where Curiosity will touch down – places it very close to the base of Mt. Sharpe, and in a relatively smooth plain where several different intriguing features of the Martian surface are within a very short distance of the rover’s landing site.   If all goes well, Curiosity will find itself at the edge of what appears very much to be an “alluvial fan”;  on Earth, this type of deposit of sediment occurs at the mouth of rivers. The potential for scientific discovery here is tremendous.

This project is an excellent example of the kind of work that the talents of the entire human race should be gathered together for.  That even such a chaotic and destructive economic system as capitalism has been able to achieve such amazing feats of engineering skill and scientific endeavor in spite of the fact that hundreds of millions of human beings living under the system all over the world will never get to see the inside of a school is both a tribute to capitalism and condemns it.

Under a workers government, under a democratically planned socialist system, every single child on Earth will have the opportunity to go to school and study science.  Under capitalism hundreds of millions of young children will never get that opportunity, and their unique talents will never be given the chance to develop and to contribute to the solution of the many complex problems facing human society.  By abolishing the capitalist system and replacing it with an egalitarian socialist economic system, we will reap the amazing harvest of talent that now languishes in poverty all over the world.  Only then will we be able to find out what amazing things humanity living in universal peace and harmony can achieve.